

[Bidave* 7(10): October, 2020] ISSN 2349-4506
 Impact Factor: 3.799

Global Journal of Engineering Science and Research Management

http: // www.gjesrm.com ©Global Journal of Engineering Science and Research Management
 [7]

SYNCHRONIZATION OF APPLICATION INSTANCES BASED ON SWELLRT’S
COLLABORATIVE OBJECTS
Macaire Ngomo*,**
*CM IT CONSEIL – Département Ingénierie, Innovation, Recherche 32 rue Milford Haven 10100
Romilly sur Seine (France)
**Institut National des Sciences Appliquées de Rouen (INSA) – Laboratoire LITIS, Campus INSA
de Rouen Avenue de l’Université, 76801 Saint-Étienne-du-Rouvray Cedex (France)

DOI: 10.5281/zenodo.4263950

ABSTRACT
We propose to define a protocol which manages the synchronization of two instances of the same application,
through a communication network. We are aiming for something simpler: to synchronize instances of the same
application on different computers, especially in a context of low-speed Internet connection, with applications for
example in the fields of distance education or remote assistance. In this article, we describe the situation using an
extended automata asynchronous composition model. Our study is carried out within the framework of a general
synchronizable application. In the particular context of this study, the envisaged application corresponds to a
SERPOLET environment integrating communication modules, for the synchronous and / or asynchronous follow-
up or support of a learner (respectively a group of learners) by his tutor (respectively their tutor). Our early
implementations of the synchronization mechanism used socket and RMI communications in Java. In this new
implementation, which is the subject of this study, we use the natural collaborative possibilities of SwellRT to
optimize the communication modules between application instances.

Keywords: Synchronization of application instances, synchronization protocol, synchronous or asynchronous
monitoring and support, low-speed Internet connection, intelligent system, learning Technologies for Education
systems and intelligent environment, SERPOLET system, SwellRT, Collaborative objects, RMI, Socket.

INTRODUCTION
As part of our development projects on e-learning management systems, advanced learning technologies,
intelligent environments, educational systems, we were faced with the problem of the poor quality of the links in
certain geographical areas, due to low-speed Internet connectivity, not allowing us to use the standard software of
videoconferencing, remote display, or remote document sharing, typically carrying very high-bandwidth bitmap
images. The application instance synchronization mechanism is used in different contexts. For example, the
synchronization procedure for ADO.NET is to use session variables for collaborative synchronization [ADO.NET
2017]. To address this specific need, we propose in this paper to define a protocol that manages the
synchronization of two instances or copies of the same application, through a communication network. In this
paper, we present the situation using an asynchronous composition model of extended automata [Betbeder & al.
2006] [Reffay 2003a] [Reffay 2003b] [Reffay 2005] [Sarma 1996]. Our study will be done within the framework
of a general synchronizable application. In the particular context of this study, the application envisaged will
correspond to the environment of the authoring system SERPOLET and its derived [Ngomo 2005][Ngomo
2006][Ngomo 2007a][Ngomo 2007b][OUBAHSSI & al. 2005][OUBAHSSI 2005] for synchronous and
asynchronous monitoring and assistance between a learner and his tutor. In general, it will be a matter of being
placed in a situation of assisted learning or tutored learning using a communication mechanism based on the
exchange of events based on scripts between the "Master station" and the "Slave station". Tutoring is more a
function related to the accompaniment of learners during their learning pathway [Monget M.-C. & al.
2008][Omeric 2013a][Omeric 2013b][Nivet P. 2010]. The role of tutor is reinforced in the distance education
systems thanks to a set of tools resulting from the advances of the new technologies for information and
communication. The general model for organizing online tutoring can be summarized in the following figure
[Nivet P. 2010]:

[Bidave* 7(10): October, 2020] ISSN 2349-4506
 Impact Factor: 3.799

Global Journal of Engineering Science and Research Management

http: // www.gjesrm.com ©Global Journal of Engineering Science and Research Management
 [8]

Figure 1. General Model of online tutoring to online

resource.

Figure 2. Model for organizing online tutoring with a local

resource.

Our model is inspired by this general model of tutoring and modifies it by removing remote access to educational
resources (online content) to obtain a model of tutoring called local resource. [OUBAHSSI & al. 2005] makes an
inventory of the tools according to the tutoring activities. The palette of the tutor is rich of several families of
tools. Each family changes very little in terms of pedagogy because its objectives remain constant but it can evolve
very quickly on the technical level according to the contributions of the new technologies.

PROBLEMATIC
A first user, named master (UM), has an application whose localization it manages the evolution or the course. A
second user, named slave (UE), has a copy/instance of the same application and, for example for monitoring
purposes, assistance, wants to synchronize the state of his copy, and his future evolution on that of UM. We
voluntarily chose to detach ourselves from the roles of teacher and pupil, as these roles do not necessarily reflect
the sense of synchronization. Indeed, when monitoring the activity of a pupil, the role of the teacher is held by the
teacher. In the case of an explanation given by the teacher or guardian on the environment of a student, the role
UM is held by the teacher. The local application is called X. It receives the events transmitted by the user, events
to which it reacts. Periodically, it saves its current state X as a series of states XS0, XS1, XS2 ... The last saved
state will serve as a starting point when requesting to resynchronize the remote copy of the application.

The set of states will be used during an asynchronous exchange (deferred tracking).
The following diagram (Figure 3) describes in a synoptic manner the type of exchanges that one has to consider
between the user "Master" and the user.

Figure 1. Diagram of master and slave communication.

Each module is interconnected by queues to the modules with which it communicates. These queues make it
possible to model the asynchronism of the behaviours between these entities. The function X '= f (X) describes
the sequence of states that the synchronized application saves.

The numbers in the queues represent the numbers of the events that transit between the different entities. Because
of the asynchronism, these numbers are not all processed at the same time, on the diagram. The sequence of
numbers gives the order of processing of the messages by the entities.

Of course, the notion of the backup state of an application is dependent on the type of application considered. In
the same way, events handled by an application depend on the application, both in terms of their choice and their
granularity. The main difficulty for a given application will be the possibility of identifying these events and the

[Bidave* 7(10): October, 2020] ISSN 2349-4506
 Impact Factor: 3.799

Global Journal of Engineering Science and Research Management

http: // www.gjesrm.com ©Global Journal of Engineering Science and Research Management
 [9]

notion of backup / recovery state. Subsequently, in our study, we assume that the generic application X possesses
the three preceding characteristics, implemented elsewhere in the project. This is the case of the authoring system
SERPOLET.

SYNCHRONIZATION SERVICE ARCHITECTURE
The model on which the formal specification of the distributed system that we use is based is that of extended
automata. In that model, each specified entity has a behaviour represented in the form of a finite state machine.

The architecture of the system respects the OSI three-layer basic design model. In this model, the design of a new
communication service is done by means of a software layer accessible to a set of users in the form of a set of
service primitives. This software layer consists of a set of distributed entities, which interact with one another by
defining a common message format, called PDUs (Protocol Data Units). These PDUs are physically exchanged
between entities using a lower level communication service. Figure 5 shows the architecture of the application
copy resynchronization protocol.

The "master user" and "slave user" boxes respectively represent the two users of the resynchronization service.
This service is physically realized in the form of the two software entities, "protocol entity", which interact with
each other using the underlying communication service.

The architecture defined uses two instances of "runtime" SERPOLET, one master (linked to the application) and
the other slave (linked to the control module of the application)

Figure 1. Copy synchronization protocol architecture.

Between these two instances, a distributed service, in the sense of communication service, is specified and
developed in the form of a communication protocol to effectively ensure the actual synchronization of these two
instances. The design architecture (Figure 4) will subsequently be defined in the implementation architecture in
which the entities corresponding to each user will be physically distributed on remote machines corresponding to
each user. From a conceptual point of view, the synchronization function remains decoupled from the SERPOLET
modules. In the final phase of implementation, integration of this entity with this module can be envisaged, but in
any case it will remain independent of the other functions of the synchronized software.

SYNCHRONIZATION MODULES
This part describes the list of interfaces that each user, master and slave, possesses.

Figure 1. Communication between the "Master" and "Slave" modules.

[Bidave* 7(10): October, 2020] ISSN 2349-4506
 Impact Factor: 3.799

Global Journal of Engineering Science and Research Management

http: // www.gjesrm.com ©Global Journal of Engineering Science and Research Management
 [10]

The state of each interface corresponds to one of the states of the user automata. The change of the contents of
each interface is caused by the arrival of an event, modelled by the transitions of the user automata. The two
synchronization modules are shown in the diagram in the figure below. Once the two modules are connected, a
communication channel allows the exchange of data between the two entities. Each entity receives data from the
local "application runtime" that it sends to the other remote module, and data it receives via the channel to the
local "runtime". Although it is possible to initiate a communication to several, to optimize the follow-up, in this
version the communication is point to point. Indeed, even if our model is not limited and even if there are technical
possibilities, we privilege in this study the quality of the exchanges and therefore did not envisage a simultaneous
follow-up of several positions.

Master Module
This user interface has only an indication role: it indicates whether the "master" application is operating
autonomously, or whether it slaves the slave.

Synchronize

Application synchronizing another

Figure 2. Application running in standalone mode and synchronizing another.

The proposed interface consists of two text fields. The first one at the top specifies the state of the application.
The second, below, is a message that details the meaning of this state. The transition from the "independent" state
to the "enslaved" state is caused by the arrival of the primitive "Sbdy_sync_ind". The reverse path occurs when
the primitive "Sbdy_end_sync_ind" arrives.

Slave Module

Independent

Synchro

Application running in standalone mode

Figure 3. Application running in standalone mode and not synchronizing another.

The interface of the slave has two roles: it allows requesting that the local application is enslaved to that of the
master and it informs of the synchronization state of the two applications. The requests for enslavement/servo-
control and end of enslavement/servo-control are done using a button. The status of the local application is
displayed using two text fields. The first gives a brief description of the state; the second explicitly states this
state. The interface of the slave only shows that both applications are independent when the user is in the "rest"
state. The interface of the slave only shows that both applications are independent when the user is in the "rest"
state. The action of the "sync" button causes a synchronization request. This action causes the "Req_sync_req"
primitive to be issued, as described by the slave user controller, which changes to the "Wait_conf" state. The
interface that corresponds to this state is then as follows:

In Sync

Synchro

Application being synchronized

Figure 4. Application being synchronized.

Once the synchronization is effective, the slave user receives the message "Req_sync_conf" and switches to the
"Sync_Work" state. The button becomes active again. It will be used to stop synchronization. The interface that
corresponds to this state is then as shown in the following figure.

[Bidave* 7(10): October, 2020] ISSN 2349-4506
 Impact Factor: 3.799

Global Journal of Engineering Science and Research Management

http: // www.gjesrm.com ©Global Journal of Engineering Science and Research Management
 [11]

Enslaved

End

Application slaved to that of the master

Figure 5. Application enslaved to that of the Master.

The action of the user on the "End" button corresponds to an end of synchronization of the applications. It results
in the issuing of the primitive "End_sync_req", and a return of the slave user to the "Rest" state. The new interface
then corresponds to that of the independent applications.

IMPLEMENTATION OF THE APPLICATION INSTANCES SYNCHRONIZATION

MECHANISM BASED ON SWELLRT
In this section, to improve our early implementations of the application instance synchronization mechanism and
increase collaboration power, we propose a new collaborative object-based implementation of SwellRT [SwellRT,
2017] [Hassan, 2016a, 2016b] [OSS, 2017] [Programmez!, 2017] [CORDIS, 2017].

Socket implementation
The first implementations were based on communication by socket, point to point (unicast) or multipoint
(multicast) depending on usage [Ngomo, 2018a] [Ngomo, 2018b]. The sockets interface is the most common
network programming interface allowing the conventional use of communication by socket according to the usual
client-server scheme. Sockets allow building a custom solutions.

Point-to-point communication (unicast)

for individual follow-up, support or
coaching:

Multipoint communication (multicast)
for group communication or

broadcasting:
One server One client One server Multiple clients

Figure 6. Mode of communication between “clients” and “server”.

In the Web version, a WebSocket allows bidirectional and full duplex communication on a single TCP socket
between a client and a server. When the server responds, the connection is established and the client and server
can send and receive messages. The HTTP protocol is only used to establish the connection of a WebSocket: once
the connection is established, the HTTP protocol is no longer used in favour of the WebSocket protocol.

RMI implementation in Java
The second implementation is based on RMI (Remote Method Invocation). RMI is a JDK technology in Java for
easily implementing distributed objects and remote method calls. The purpose of RMI is to allow the call,
execution, and return of the result of a method executed in a different virtual machine than that of the calling
object. RMI technology is responsible for making transparent the location of the remote object, its call and the
return of the result.

Figure 7. RMI Layered Structure Figure 8. Transport Layer

[Bidave* 7(10): October, 2020] ISSN 2349-4506
 Impact Factor: 3.799

Global Journal of Engineering Science and Research Management

http: // www.gjesrm.com ©Global Journal of Engineering Science and Research Management
 [12]

In fact, it uses two special classes, the stub and the skeleton, which must be generated with the rmic tool that
comes with the JDK. The stub is a class on the client side and the skeleton is its server side counterpart. These
two classes are responsible for ensuring all the mechanisms for calling, communicating, executing, returning and
receiving the result.

Communications between client and server are carried out using RMI-IIOP (Internet Inter-Orb Protocol), a
protocol standardized by the OMG (Object Management Group) and used in the CORBA architecture. The
transmission of data is done through a system of layers, based on the OSI model in order to guarantee
interoperability between programs and versions of Java. The stub (translate stub) and the skeleton (translate
skeleton), respectively on the client and the server, ensure the conversion of communications with the remote
object.

The Remote Reference Layer (RRL) is responsible for the location system to provide a means for objects to obtain
a reference to the remote object. It is provided by the java.rmi.Naming package. It is generally called the RMI
register because it references the objects.

The transport layer is used to listen to incoming calls as well as to establish connections and transport data on the
network via the TCP protocol. The java.net.Socket and java.net.SocketServer packages implicitly provide this
function.

SwellRT implementation
In this section, to improve ours first implementations of the application instances synchronization mechanism, we
propose an implementation based on collaborative objects de SwellRT. First implementations were based on the
use of sockets and RMI in Java. For this new implementation, we used collaborative objects by exploiting the
natural collaborative possibilities and development facilities offered by SwellRT, an open source framework for
the development of decentralized collaborative Web applications naturally offering storage, sharing and
collaboration services.

SwellRT is a BaaS technology capable of working in a decentralized manner thanks to the use of an open protocol
to interconnect services (a federated network) and to exchange data in real time.

Development frameworks are built thinking in centralized apps, moreover when thinking of collaborative apps.
SwellRT (http://swellrt.org) is a development framework for building decentralized real-time collaborative apps,
easily and avoiding extra code to the developer. SwellRT provides a server side (storage, sharing, identity,
federation) and an API to build apps in JavaScript, Java or Android. You may think of Google Drive Real-Time
API or Firebase but decentralized & open source.

Initially developed as part of the P2PVALUE [P2Pvalue 2017][P2Pvalue blog 2016][Ojanguren-Menendez
2015][Hassan 2018][CORDIS 2017][RoughHaste 2017] project which was stopped in September 2016, SwellRT
joined the fold of the Apache foundation. SwellRT is a real-time storage platform. Its API makes it possible to
manipulate and share objects in real time on a decentralized network. SwellRT enables real-time collaboration
within web applications [Horizon, 2017]. Besides code sharing, SwellRT can be used to build chats, survey
platforms, or document management platforms, for example.

SwellRT is a free and open-source backend-as-a-service and API focused to ease development of apps featuring
real-time collaboration. It supports the building of mobile and web apps, and aims to facilitate interoperability and
federation. It provides prebuilt features to speed up development of collaborative Web applications:

- Real-time storage (eventual consistency) (NoSQL)
- Extensible text collaborative editor
- User management and authentication
- Server federation with Matrix (XMPP or Matrix.org [Matrix 2020])
- Integration of third party systems based on events (in development)

[Bidave* 7(10): October, 2020] ISSN 2349-4506
 Impact Factor: 3.799

Global Journal of Engineering Science and Research Management

http: // www.gjesrm.com ©Global Journal of Engineering Science and Research Management
 [13]

Concurrent access and storage control is based on the Apache Wave Operational Transformation System, which
ensures the integrity of shared data. Apache Wave is a discontinued software framework for online real-time
collaborative editing. Google originally developed it under the name Google Wave. It was announced at the
Google I / O conference on May 28, 2009. Business Transformation: Business Transformation (OT) is a
technology to support a range of collaboration features in advanced collaborative software systems. In 2009, OT
was adopted as the core technique behind collaboration features in Apache Wave and Google Docs.

The main feature of SwellRT is real-time storage based in objects. They can be shared among participants that
can mutate them in real-time. All changes are persisted and propagated transparently. Object's state is eventually
consistent.

Applications using SwellRT
SwellRT facilitates the development of mobile/web apps. Several apps are built using this technology. Apart from
to the demos provided by SwellRT and many applications developed by third parties, two full-fledged applications
that are benchmarks currently use SwellRT technology:

- JetPad (jetpad.net) [JetPad 2020], a GoogleDoc-like collaborative editor, free/open source and federated,
- Teem (http://teem.works/) [Teem 2020], a free/open source web/mobile app for the management of

communities and collectives.

Collaborative object-based implementation with SwellRT technology
SwellRT is a fork from Apache Wave, inherits some of its architecture and technology stack. However, it grew
beyond the limits of Wave, first presenting itself as a web framework and nowadays growing to a backend-as-a-
service platform. Its current technical approach covers the following:

- It is fully free/open source software. It is developed in Java. GWT with JSInterop is used to generate
JavaScript API reusing the same source code. Android client is also built from the same Java sources.

- It provides an extensible and pluggable rich-text editor component for Web (only) supporting custom
annotations and widgets.

- Real-time data storage is based on Wave's Operational Transformations model, thus it is eventually
consistent.

- It is designed to maximize interoperability, and follows a federation approach similar to Apache Wave,
using XMPP or Matrix.org communication protocol. It aims to support the creation of apps that are
federated, i.e. rely on multiple interoperable servers, and objects shared across servers.

SwellRT provides a programming model based on collaborative objects. A collaborative object is a JSON-like
object that can be shared by some users (or groups) that can make changes in real-time. Changes are propagated
(and notified) in real-time to any user connected to the object. Objects and participants are uniquely identified on
the Internet enabling decentralized access from different federated servers.

SwellRT allows to store and share data in real-time using collaborative objects. They can be thought as JSON
documents with a special syntax and methods to access and change their properties.

Figure 9. Communication via collaborative object.

A collaborative object has an unique identifier on Internet, for example mycompany.com/s+I7Nd7z3MC3N,
where first part is the domain of the Swell server, and the second part is an id, provided by the client's app or

App instance #1 (User#1)

App instance #2 (User#2)

Collaborative Object
App instance #3 (User#3)

[Bidave* 7(10): October, 2020] ISSN 2349-4506
 Impact Factor: 3.799

Global Journal of Engineering Science and Research Management

http: // www.gjesrm.com ©Global Journal of Engineering Science and Research Management
 [14]

randomly generated by Swell. When different instances of an app have opened same objects, they can share data
in real-time through them.

Changes in a collaborative object are persisted in the server and transmitted to all instances in real-time.
A collaborative object can store properties of simple data types (string, integers, etc.) as well as rich-text and
references to files or attachments. This approach is suitable to implement any document based collaborative
application like text editors or spreadsheets.

Architecture
The architecture of our new implementation is composed of:

- A SwellRT server which manages the storage and real-time sharing of data in the form of collaborative
objects (JSON objects)

- Communication modules designed with the SwellRT API in a distributed P2P architecture [Ojanguren-
Menendez 2015][Hassan 2018][CORDIS 2017] playing the roles of master and slave and using
collaborative objects. These communication modules ("master" and "slave") ensure data exchange
between the master and slave instances of the application.

Several situations are taken into account:

- Point-to-point communication between the "master" instance and the "slave" instance. Thanks to user
identification, the "master" instance can exchange simultaneously with several "slave" instances,

- Multicast communication: the "master" instance shares information with several "slave" instances. This is
the case when, for example, a user (e.g. a teacher) shares content with other members (e.g. students).

Figure 10. Communication via collaborative object.

CONCLUSION
This paper presented the design, using the SDL language, of a service and a synchronization protocol for copies
of distributed applications, and the remote control of one of them. A set of user interfaces was then deduced from
the user behaviour. This protocol has been tested and validated in an environment built around authoring systems
SERPOLET. We envision as a continuation of research work to extend it to other environments. This mechanism
is an alternative to videoconferencing software, remote screen sharing, or remote document sharing, typically
carrying bitmap images that are very bandwidth-intensive. These software are used to communicate, give
webinars, web conferencing, remote assistance or troubleshooting, remote meetings, collaborative online work,
etc. which require high-quality links (broadband), and therefore difficult to use in the case of a low-speed network.
Compared to these Softwares, the mechanism used here is very simple and economical. It comes down to a very
light-based event exchange that does not require a lot of resources or a large bandwidth. This mechanism therefore
makes it possible to develop synchronous and / or asynchronous learning tools that are very economical.

Our project on this subject aims to generalize this approach to other types of applications other than online training
environments. The idea is to allow any application to receive synchronization services from application instances
in point-to-point or multicast mode. The first version of our implementation is based on Java technologies and
sockets and RMI. In order to optimize this implementation, we exploited the possibilities of SwellRT. Compared
to the first implementation, we noted ease of development as well as a marked improvement in performance. We

App instance #2 (User#2) App instance #3 (User#3) App instance #1 (User#1)

SwellRT Server

Collaborative Object

[mycompany.com/s+I7Nd7z3MC3N]

App instance #2 (User#2)

[Bidave* 7(10): October, 2020] ISSN 2349-4506
 Impact Factor: 3.799

Global Journal of Engineering Science and Research Management

http: // www.gjesrm.com ©Global Journal of Engineering Science and Research Management
 [15]

also plan to experiment with the Linda model [Carriero, 1994] [Wells, 2009] (a model of coordination and
communication between several parallel processes operating on stored and retrieved objects, associative virtual
memory) to implement the exchange of messages low-level between application instances.

From a performance perspective, the implementation of the communication components is done in a naturally
collaborative environment, building on SwellRT's collaborative object-based programming model. This has
enabled us to free ourselves from the costly specific developments of the first versions and opens up new operating
prospects directly and from all the wealth of services offered by SwellRT.

REFERENCES
Journal

1. [Betbeder & al. 2006] Betbeder M.-L., Reffay C. and Chanier T., 2006. Environnement audiographique
synchrone : recueil et transcription pour l'analyse des interactions multimodales. In JOCAIR 2006,
Premières journées Communication et Apprentissage instrumentés en réseau, Amiens, France, pages
406--420, July 2006.

2. [Ngomo 2007b] NGOMO M., ABDULRAB H., 2007, "APPLICATION SERVICE PROVIDER
SYSTEM : THE NEW WAY TO PROVIDE INTEROPERABILITY BETWEEN LEARNING
MANAGEMENT SYSTEMS", Web Based Computer, WBC’2007.

3. [Omeric 2013a] Omeric., Point sur la FOAD: Rapport de mission. Mission de suivi du projet FOAD-
LSN. Coopération Internationale 2012 (2013). Collectif OMERIC, Mars 2013, France.

4. [Omeric 2013b] Omeric., 2013: List des termes courants du domaine de la formation et de
l'enseignement. Collectif OMERIC, Août 2013, France.

5. [Nivet P 2010] Pierre Nivet. 2010. Un inventaire des outils du tutorat en ligne. Collectif OMERIC, Avril
2010, France.

6. [Sarma, 1996] A. Sarma. 1992, An introduction to SDL-92. Computer Networks and ISDN Systems
28(1996):1603-1615.

7. [Carriero 1994] Carriero, Nicholas; Gelernter, David; Mattson, Timothy; Sherman, Andrew. 1994, "The
Linda Alternative to Message-Passing systems". Parallel Computing. doi:10.1016/0167-8191(94)90032-
9.

Conference paper or contributed volume

1. [ADO.NET 2017] ADO.NET, 2017, « Synchronisation de bases de données Scénarios de collaboration
Synchronisation d'autres bases de données compatibles ADO.NET. https://msdn.microsoft.com/fr-
fr/library/cc761645(v=sql.105).aspx.

2. [CORDIS 2017] "European Commission : CORDIS : News and Events : A substantial boost for easily
and safely producing new online apps". cordis.europa.eu. retrieved 2020-08-20.

3. [Monget M.-C. & al. 2008] Marie-Christine Monget et Tomi Kelo, 2008, Work towards automated
vendor-neutral certification of ICT skills. Actes du congrès Ed-Media2008, pages 37-49, Vienne (au),
Juillet 2008.

4. [Ngomo 2005] NGOMO M., ABDULRAB H. and OUBAHSSI L., 2005a. "Application Service Provider
System : a new concept to provide interoperability between learning management systems"; Proceedings
of E-Learn 2005 World Conference (World Conference on E-Learning in Corporate, Government,
Healthcare, and Higher Education), Vancouver,(Canada); Research/Technical Showcase; pp 2763-2769
(2005)

5. [Ngomo 2006] NGOMO M. and ABDULRAB H., 2006. "Application Service Provider System: Using
Web Services to Provide Interoperability between Learning Management Systems"; International
Conference WTAS 2006 (Web Technologies, Applications, and Services), July 17-19, 2006, Calgary,
Alberta, Canada, Editor(s): J.T. Yao; pp 119-125 (2006)

6. [Ngomo 2007b] NGOMO M., ABDULRAB H., 2007: “Application service provider system: the new
way to provide interoperability between learning management systems”, International Conference
Applied Computing 2007, IADISI'2007, Salamanca, Spain, 18-20 February 2007; 12 p. (2007)

[Bidave* 7(10): October, 2020] ISSN 2349-4506
 Impact Factor: 3.799

Global Journal of Engineering Science and Research Management

http: // www.gjesrm.com ©Global Journal of Engineering Science and Research Management
 [16]

7. [Ngomo 2018a] Macaire Ngomo, Habib Abdulrab, "Synchronization of distributed application instances
as a learning tracking mechanism", International Journal of Scientific & Engineering Research Volume
9, Issue 3, March-2018, p324, ISSN 2229-5518.

8. [Ngomo 2018b] Macaire NGOMO, "Synchronization of application instances as economical way for E-
learning and tele-assistance", 4th International Conference On Computer Networks and Information
Technology Held on23rd-24thMarch 2018, in Pattaya, Thailand, p235, ISBN:9780998900049.

9. [Ojanguren-Menendez 2015] Ojanguren-Menendez, Pablo; Tenorio-Fornés, Antonio; Hassan, Samer,
“Distributed Computing and Artificial Intelligence, (2015]). 12th International Conference”. Advances
in Intelligent Systems and Computing. Springer, Cham. pp. 269–276. doi:10.1007/978-3-319-19638-
1_31. ISBN 9783319196374.

10. [OUBAHSSI & al. 2005] OUBAHSSI L., Grandbastien M., Ngomo M. and Claes G., 2005. « The
Activity at the Center of the Global Open and Distance Learning Process. » The 12th International
Conference on Artificial Intelligence in Education, AIED 2005, Amsterdam.

11. [OUBAHSSI 2005] L. OUBAHSSI , 2005: "Conception de plates-formes logicielles pour la formation à
distance, présentant des propriétés d'adaptabilité à différentes catégories d'usagers et d'interopérabilité
avec d'autres environnements logiciels", œuvre [Thèse de M. L. OUBAHSSI dans le cadre
d'A6/OMERIC, décembre/2005], Thèse de doctorat de l’Université René Descartes – Paris V, Centre
Universitaire des Saints Pères, UFR de Mathématiques et Informatique, Paris, 2005.

12. [Reffay 2003a] Reffay C. and Chanier T., 2003. Mesurer la cohésion d'un groupe d'apprentissage en
formation à distance. In Actes de la conférence Environnements Informatiques pour l'Apprentissage
Humain (EIAH'2003), Strasbourg, France, pages 367--378, April 2003.

13. [Reffay 2003b] Reffay C. and Chanier T., 2003. How social network analysis can help to measure
cohesion in collaborative distance-learning. In Procs. of Computer Supported Collaborative Learning
Conference (CSCL'2003), Bergen, Norway, pages 343-352, June 2003. Kluwer Academic Publishers :
Dordrecht(nl).

14. [Reffay 2005] Reffay C., 2005. Réseaux sociaux et analyse de traces des forums d'une communauté
d'apprentissage. In G.-L. Baron, E. Bruillard, and M. Sidir (Dir.), editors, Symposium, formation et
nouveaux instruments de communication, Amiens, France, pages 13 pages, January 2005.

15. [Wells 2009] Wells, George. 2009: "Coordination Languages: Back to the Future with Linda" (PDF).
Rhodes University. Archived from the original (PDF) on 2009-12-19.

Others references

1. [Hassan 2016] Hassan Samer, “SwellRT: Facilitating Decentralized Real-Time Collaboration”.
Harvard's Berkman CRCS (2016-10-06), CRCS Seminar 09/26: crcs.seas.harvard.edu. retrieved 2020-
08-20

2. [Hassan 2016] Hassan Samer, “SwellRT: Facilitating decentralized real-time collaboration”, Harvard
Berkman Center, Monday, September 26, 2016, 11:30am to 1:00pm, crcs.seas.harvard.edu. retrieved
2020-08-20

3. [Hassan 2018] Hassan Samer, "'How P2P Will Save The World', with Samer Hassan – STEAL THIS
SHOW". 2018. stealthisshow.com. retrieved 2020-08-20.

4. [Horizon 2017] Horizon, "Collaboration that doesn't give others a license to distribute your stuff".
Horizon: the EU Research & Innovation magazine. https://horizon-magazine.eu/article/collaboration-
doesn-t-give-others-license-distribute-your-stuff_en.html (14 June 2017). Retrieved 2020-08-20.

5. [JetPad 2020] “JetPad”. jetpad.net. retrieved 2020-08-20.
6. [Matrix 2020] Matrix (XMPP or Matrix.org) Matrix is an open standard for interoperable, decentralised,

real-time communication over IP. retrieved 2020-08-20.
7. [OSS 2017] OSS|www.opensourceschool.fr. "SwellRT : une technologie open source pour applications".

retrieved 2020-08-20.
8. [P2Pvalue blog 2016] P2Pvalue blog (2016). https://p2pvalue.eu/. "Special Announcement: P2Pvalue

and Google Summer of Code 2016". P2Pvalue blog. 2016-04-17. retrieved 2020-08-20.
9. [P2Pvalue 2017] P2Pvalue (2017). SwellRT: SwellRT, open source framework for real-time

collaboration, P2Pvalue, 2017-10-20, retrieved 2020-08-20.

[Bidave* 7(10): October, 2020] ISSN 2349-4506
 Impact Factor: 3.799

Global Journal of Engineering Science and Research Management

http: // www.gjesrm.com ©Global Journal of Engineering Science and Research Management
 [17]

10. [Programmez! 2017] Programmez! (French Magazine). Par: fredericmazue, mer, 03/05/2017 - 11:4.
"SwellRT : un cadre open source de développement d'applications Web collaboratives décentralisées".
https://www.programmez.com/actualites/swellrt-un-cadre-open-source-de-developpement-
dapplications-web-collaboratives-decentralisees-25932. retrieved 2020-08-20.

11. [RoughHaste 2017] Rough Haste (in RoughHaste, 2017-04-23), "Notes on “How P2P Will Save the
World”". https://medium.com/roughhaste/notes-on-how-p2p-will-save-the-world-a12db16d1b47.
retrieved 2020-08-20.

12. [SwellRT, 2017] “SwellRT”|http://swellrt.org/. retrieved 2020-08-20.
13. [Teem 2000] "Teem". http://teem.works/. Retrieved Retrieved 2020-08-20.

